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Divider Implementation 
 

ALGORITHM 
 The division of two unsigned integer numbers 𝐴

𝐵⁄  (where 𝐴 is the dividend and 𝐵 the divisor), results in a quotient 𝑄 and 

a remainder 𝑅. These quantities are related by 𝐴 = 𝐵 × 𝑄 + 𝑅.  

For the implementation, we follow the hand-division method. We grab bits of A one by one and comparing it with the divisor. 
If the result is greater or equal than B, then we subtract B from it. On each iteration, we get one bit of Q. Fig. 1 shows the 
algorithm as well as an example:   A = 10001100; B = 1001 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
For hardware implementation, we consider restoring dividers (i.e., those that keep the actual residue value at every step). 
 

SUBTRACTION OF UNSIGNED NUMBERS REPRESENTED WITH 𝑛 BITS: 𝑇 = 𝑅 − 𝐵 
 This point deserves special attention as the divider hardware relies on a result obtained here. 
 We usually determine the sign of the subtraction by sign-extending 𝑅 and 𝐵 so that they are in 2’s complement representation 

with 𝑛 + 1 bits. Then, we do: 𝑇 = 𝑅 + 𝑛𝑜𝑡(𝐵) + 1, where 𝑇 = 𝑡𝑛𝑡𝑛−1𝑡𝑛−2 … 𝑡0, and 𝑡𝑛 determines the sign of the subtraction 

result.  
However, when 𝑅 and 𝐵 are unsigned, we can compute 𝑛𝑜𝑡(𝐵) without sign-extending 𝐵. We then analyze 𝑐𝑛 = 𝑐𝑜𝑢𝑡: 
- If 𝑐𝑛 = 1 → 𝑅 ≥ 𝐵 (and 𝑅 − 𝐵 is equal to 𝑡𝑛−1𝑡𝑛−2 … 𝑡0, i.e. it is an unsigned number with 𝑛 bits) 
- If 𝑐𝑛 = 0 → 𝑅 < 𝐵 (here 𝑅 − 𝐵 is NOT equal to 𝑡𝑛−1𝑡𝑛−2 … 𝑡0) 

 
NOTE ABOUT THE 2’S COMPLEMENT OF ZERO 
 Let 𝐴 be a number in 2’s complement with 𝑛 bits: 𝐴 = 𝑎𝑛−1𝑎𝑛−2 … 𝑎0, where 𝐴 = −𝑎𝑛−12𝑛−1 + ∑ 𝑎𝑖2𝑖𝑛−2

𝑖=0  is the signed decimal 

value of 𝐴. 

 The 2’s complement of 𝐴 is given by: 𝑃 = 𝑛𝑜𝑡(𝐴) + 1. 𝑃 = 𝑝𝑛−1𝑝𝑛−2 … 𝑝0 

If 𝑃 and 𝐴 are thought as 𝑛-bit unsigned numbers, i.e.: 𝐴 = ∑ 𝑎𝑖2𝑖𝑛−1
𝑖=0 , 𝑃 = ∑ 𝑝𝑖2𝑖𝑛−1

𝑖=0  then: 𝑃 = 2𝑛 − 𝐴.   

 What if 𝐴 = 0? Here 𝑃 = 2𝑛 requires 𝑛 + 1 bits. Why 𝑃 is not zero? This is actually 

consistent with 2’s complement arithmetic, as in the operation 𝑄 − 𝐴: 
𝑄 − 𝐴 = 𝑄 + 𝑛𝑜𝑡(𝑃) + 1, we let 𝑐𝑖𝑛 hold the value of 1, so that if 𝐴 = 0, then 

𝑛𝑜𝑡(𝐴) = 11 … 11 and 𝑐𝑖𝑛 = 1. This way, 𝑛𝑜𝑡(𝐴) + 1 is properly represented. Fig. 

2 shows this operation. Note that with 𝑐𝑖𝑛 = 1, all carries (from 𝑐0 to 𝑐𝑁) are 
one. The result of the operation is then Q. There is no overflow as 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 =
𝑐𝑛𝑐𝑛−1 = 0. Thus, the case 𝐴 = 0 works very well for 2’s complement 

operations, if we include let 𝑐𝑖𝑛 carry the value of 1. 

 
COMPUTING 𝑹 − 𝑩 WITH 𝒏 bits 

 𝑅 = 𝑟𝑛−1𝑟𝑛−2 … 𝑟0, 𝐵 = 𝑏𝑛−1𝑏𝑛−2 … 𝑏0. With 𝑅, 𝐵  unsigned, we have  0 ≤ 𝑅, 𝐵 ≤ 2𝑛 − 1 
 To do 𝑅 − 𝐵, we sign-extend 𝑅 and 𝐵 to 𝑛 + 1 bits turning them into two numbers in 2’s complement representation. The 

sign-extension actually amounts to zero-extending. Then: 𝑅 = 0𝑟𝑛−1𝑟𝑛−2 … 𝑟0, 𝐵 = 0𝑏𝑛−1𝑏𝑛−2 … 𝑏0. 𝑟𝑛 = 𝑏𝑛 = 0. In 2’s 

complement, we have that: 0 ≤ 𝑅, 𝐵 ≤ 2𝑛 − 1. It follows that: −(2𝑛 − 1) ≤ 𝑅 − 𝐵 ≤ 2𝑛 − 1. Thus 𝑅 − 𝐵 can be represented 

in 2’s complement with 𝑛 + 1 bits (as expected). 
 Let 𝐾 = 𝑛𝑜𝑡(𝐵) + 1,  𝐾 = 𝑘𝑛𝑘𝑛−1𝑘𝑛−2 … 𝑘0. In unsigned representation,  𝐾 = 2𝑛+1 − 𝐵. 

 
Fig. 3 shows the operation 𝑅 − 𝐵 by using: 𝑅 + 𝐾, where 𝐾 = 𝑛𝑜𝑡(𝐵) + 1. Recall that we let 1 be held by 𝑐𝑖𝑛. Note that if 𝐵 =
0 → 𝐾 = 2𝑛+1 (here 𝐾 is represented by the second operator as well as 𝑐𝑖𝑛 = 1) 

 

Figure 1. Division Algorithm 
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ALGORITHM

R = 0

for i = n-1 downto 0

left shift R (input = ai)

if R  B

qi = 1, R  R-B

else

qi = 0

end

end
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Now, we determine the value of 𝑘𝑛−1: 

 Case 𝐵 ≠ 0: 1 ≤ 𝐵 ≤ 2𝑛 − 1 → 2𝑛+1 − (2𝑛 − 1) ≤ 𝐾 ≤ 2𝑛+1 − 1 ∴ 2𝑛 + 1 ≤ 𝐾 ≤ 2𝑛+1 − 1. Thus, 𝑘𝑛 = 1 
 Case 𝐵 = 0: 𝐾 = 2𝑛+1. 𝐾 requires 𝑁 + 2 bits, with 𝑘𝑛+1 = 1, and 𝑘𝑛 = 0: 

 

 𝐾 𝑘𝑛𝑘𝑛−1𝑘𝑛−2 … 𝑘0 𝑘𝑛 

𝐵 ≠ 0 

(or 𝐵 > 0) 

2𝑛 100…0 

𝑘𝑛 = 1 
2𝑛 + 1 100…1 

… … 
2𝑛+1 − 1 111…1 

𝐵 = 0 2𝑛+1 1000…0 𝑘𝑛 = 0 

 
Now, we consider 𝑅, 𝐵, and 𝐾 to represent unsigned integers. 

𝑅 − 𝐵 ≡ 𝑅 + 𝐾 = ∑ 𝑟𝑖2𝑖

𝑛

𝑖=0

+ ∑ 𝑘𝑖2𝑖

𝑛

𝑖=0

= ∑ 𝑟𝑖2𝑖

𝑛−1

𝑖=0

+ 𝑘𝑛2𝑛 + ∑ 𝑘𝑖2𝑖

𝑛−1

𝑖=0

 

𝑅 + 𝐾 = 𝑅 + 2𝑛+1 − 𝐵 = ∑ 𝑟𝑖2𝑖

𝑛−1

𝑖=0

+ 2𝑛+1 − ∑ 𝑏𝑖2𝑖

𝑛−1

𝑖=0

 

 
 𝑅 − 𝐵 < 0: 

Since 𝑅 ≥ 0 → 𝐵 > 0 → 𝑘𝑛 = 1 

 𝑅 + 2𝑛+1 − 𝐵 = ∑ 𝑟𝑖2𝑖𝑛−1
𝑖=0 + 2𝑛+1 − ∑ 𝑏𝑖2𝑖𝑛−1

𝑖=0 < 2𝑛+1 

 𝑅 + 𝐾 = ∑ 𝑟𝑖2𝑖𝑛−1
𝑖=0 + 𝑘𝑛2𝑛 + ∑ 𝑘𝑖2𝑖𝑛−1

𝑖=0 < 2𝑛+1 → ∑ 𝑟𝑖2𝑖𝑛−1
𝑖=0 + ∑ 𝑘𝑖2𝑖𝑛−1

𝑖=0 < 2𝑛 

o The (𝑛 + 1)-bit sum (considering the operation as unsigned) of R and K is lower than 2𝑛+1. Then, there is no overflow 

in the (𝑛 + 1)- bit unsigned sum. Thus 𝑐𝑛+1 = 0. 

o The 𝑛-bit sum (considering the operations as unsigned) of 𝑅 and 𝑘𝑛−1𝑘𝑛−2 … 𝑘0 is lower than 2𝑛. Thus, there is no 

overflow of the 𝑛-bit unsigned sum. Thus 𝑐𝑛 = 0. 

 
 𝑅 − 𝐵 ≥ 0: 

 𝑅 + 2𝑛+1 − 𝐵 = ∑ 𝑟𝑖2𝑖𝑛−1
𝑖=0 + 2𝑛+1 − ∑ 𝑏𝑖2𝑖𝑛−1

𝑖=0 ≥ 2𝑛+1 

 𝑅 + 𝐾 = ∑ 𝑟𝑖2𝑖𝑛−1
𝑖=0 + 𝑘𝑛2𝑛 + ∑ 𝑘𝑖2𝑖𝑛−1

𝑖=0 ≥ 2𝑛+1 → ∑ 𝑟𝑖2𝑖𝑛−1
𝑖=0 + ∑ 𝑘𝑖2𝑖𝑛−1

𝑖=0 ≥ 2𝑛+1 − 𝑘𝑛2𝑛 

o The (𝑛 + 1)-bit sum (considering the operation as unsigned) of R and K is greater or equal than 2𝑛+1. Then, there is 

overflow of the (𝑛 + 1)-bit unsigned sum. Thus 𝑐𝑛+1 = 1. 
o For the n-bit sum of R and 𝑘𝑛−1𝑘𝑛−2 … 𝑘0, we have two cases: 

𝐵 > 0 → 𝑘𝑛 = 1. Then ∑ 𝑟𝑖2𝑖𝑛−1
𝑖=0 + ∑ 𝑘𝑖2𝑖𝑛−1

𝑖=0 ≥ 2𝑛+1 − 2𝑛 → ∑ 𝑟𝑖2𝑖𝑛−1
𝑖=0 + ∑ 𝑘𝑖2𝑖𝑛−1

𝑖=0 ≥ 2𝑛 

𝐵 = 0 → 𝑘𝑛 = 0. Then ∑ 𝑟𝑖2𝑖𝑛−1
𝑖=0 + ∑ 𝑘𝑖2𝑖𝑛−1

𝑖=0 ≥ 2𝑛+1 

In both cases, the n-bit sum (considering the operands as unsigned) of 𝑅 and 𝑘𝑛−1𝑘𝑛−2 … 𝑘0 is greater of equal than 2𝑛. 
So, there is overflow of the 𝑛-bit unsigned sum. Thus 𝑐𝑛 = 1 when 𝑅 ≥ 𝐵. 

 
 2’s complement operation 𝑅 − 𝐵 with 𝑛 + 1 bits: There is no overflow of the subtraction as 𝑐𝑛 = 𝑐𝑛−1.  
 For 𝑅 − 𝐵 ≥ 0: The result 𝑇 = 𝑅 − 𝐵 is a positive number, thus 𝑇𝑛 = 0. Therefore 𝑡𝑛−1𝑡𝑛−2 … 𝑡0 contains 𝑅 − 𝐵 in unsigned 

representation. 
 
In conclusion: 
 
 𝐼𝑓 𝑅 < 𝐵 → 𝑐𝑛 = 0. The 𝑛 bits 𝑇𝑛−1𝑇𝑛−2 … 𝑇0 DO NOT contain the result 𝑅 − 𝐵. 

 𝐼𝑓 𝑅 ≥ 𝐵 → 𝑐𝑛 = 1. The 𝑛 bits  𝑇𝑛−1𝑇𝑛−2 … 𝑇0 DO represent 𝑅 − 𝐵 in unsigned representation. 
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Figure 3. Operation 𝑅 − 𝐵 ≡ 𝑅 + 𝐾 = 𝑅 + 𝑛𝑜𝑡(𝐵) + ! 
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RESTORING ARRAY DIVIDER FOR UNSIGNED INTEGERS 
 
 𝐴, 𝐵: positive integers in unsigned representation. 𝐴 = 𝑎𝑁−1𝑎𝑁−2 … 𝑎0 with 𝑁 bits, and 𝐵 = 𝑏𝑀−1𝑏𝑀−2 … 𝑏0 with 𝑀 bits, with 

the condition that 𝑁 ≥ 𝑀. 𝑄 = 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡, 𝑅 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒. 𝐴 = 𝐵 × 𝑄 + 𝑅. 

 
In this parallel implementation, the result of every stage is called 
the remainder 𝑅𝑖.  

 
Fig. 4 depicts the parallel algorithm with 𝑁 stages. For each stage 

𝑖, 𝑖 = 0, … , 𝑁 − 1, we have: 

𝑅𝑖: output of stage 𝑖. Remainder after every stage.  
𝑌𝑖: input of stage 𝑖. It holds the minuend.  

 
For the next stage, we append the next bit of 𝐴 to  𝑅𝑖. This becomes 

𝑌𝑖+1 (the minuend): 
𝑌𝑖+1 = 𝑅𝑖&𝑎𝑁−1−𝑖 , 𝑖 = 0, … , 𝑁 − 1 

 
At each stage 𝑖, the subtraction 𝑌𝑖 − 𝐵 is performed. If 𝑌𝑖 ≥ 𝐵 then 

𝑅𝑖 = 𝑌𝑖 − 𝐵. If 𝑌𝑖 < 𝐵, then 𝑅𝑖 = 𝑌𝑖. 

 

Stage 𝑌𝑖 Computation of 𝑅𝑖 
# of 

𝑅𝑖 bits 

0 𝑌0 = 𝑎𝑁−1 
𝑅0 = 𝑌0 − 𝐵, 𝑖𝑓 𝑌0 ≥ 𝐵 
𝑅0 = 𝑌0, 𝑖𝑓 𝑌0 < 𝐵 

1 

1 𝑌1 = 𝑅0&𝑎𝑁−2 
𝑅1 = 𝑌1 − 𝐵, 𝑖𝑓 𝑌1 ≥ 𝐵 
𝑅1 = 𝑌1, 𝑖𝑓 𝑌1 < 𝐵 

2 

2 𝑌2 = 𝑅1&𝑎𝑁−3 
𝑅2 = 𝑌2 − 𝐵, 𝑖𝑓 𝑌2 ≥ 𝐵 
𝑅2 = 𝑌2, 𝑖𝑓 𝑌2 < 𝐵 

3 

… … … … 

M-1 𝑌𝑀−1 = 𝑅𝑀−2&𝑎𝑀−𝑁 
𝑅𝑀−1 = 𝑌𝑀−1 − 𝐵, 𝑖𝑓 𝑌𝑀−1 ≥ 𝐵 
𝑅𝑀−1 = 𝑌𝑀−1, 𝑖𝑓 𝑌𝑀−1 < 𝐵 

M 

 
Since 𝐵 has 𝑀 bits, the operation 𝑌𝑖 − 𝐵 requires 𝑀 bits for both 

operands. To maintain consistency, we let 𝑌𝑖 be represented with 
𝑀 bits. 

 
𝑅𝑖: output of each stage. For the first 𝑀 stages, 𝑅𝑖 requires 𝑖 + 1 
bits. However, for consistency and clarity’s sake, since 𝑅𝑖 might be 

the result of a subtraction, we let 𝑅𝑖 use M bits.  

 
For stages 0 𝑡𝑜 𝑀 − 2: 

𝑅𝑖 is always transferred onto the next stage. Note that we transfer 

𝑅𝑖 with 𝑀 − 1 least significant bits. There is no loss of accuracy 
here since 𝑅𝑖 at most requires M-1 bits for stage M-2. We need 𝑅𝑖 

with M-1 bits since 𝑌𝑖+1 uses 𝑀 bits. 

 
Stages 𝑀 − 1 𝑡𝑜 𝑁 − 1: 

Starting from stage 𝑀 − 1, 𝑅𝑖 requires 𝑀 bits. We also know that 

the remainder requires at most 𝑀 bits (maximum value is 2𝑀 − 2).  

So, starting from stage M-1 we need to transfer 𝑀 bits. 

As 𝑌𝑖+1 now requires 𝑀 + 1 bits, we need 𝑀 + 1 units starting from stage 𝑀. 

 
 To implement the operation 𝑌𝑖 − 𝐵 we use a subtractor. When 𝑌𝑖 ≥ 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 1, and when 𝑌𝑖 < 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 0.  This 𝑐𝑜𝑢𝑡𝑖 

becomes a bit of the quotient:  𝑄𝑖 = 𝑐𝑜𝑢𝑡𝑁−1−𝑖. This quotient Q requires N bits at most.  

 Also, the final remainder is the result of the last stage. The maximum theoretical value of the remainder is 2𝑀 − 2, thus the 
remainder 𝑅 requires 𝑀 bits. 𝑅 = 𝑅𝑁−1. 

 Also, note that we should avoid a division by 0. If B=0, then, in our circuit: 𝑄 = 2𝑁 − 1 and R = 𝑎𝑀−1𝑎𝑀−2 … 𝑎0. 

  

Figure 4. Parallel implementation algorithm 

 

Y0

R0

...

...

Y1

R1

...

Y2

R2

...

Y3

RM-2

...

YM-1

...

...
Stage 0

Stage 1

Stage 2

Stage 3

Stage M-1

RM-1

...

YM

Stage M

RM

...

YM+1

Stage M+1

RM+1

...

YM+2

Stage M+2

...

...

RN-2

...

YN-1

Stage N-1

RN-1

M bits

M+1 bits



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
Digital Library: Arithmetic Cores  RECRLAB@OU 

 

 

4 Daniel Llamocca 

COMBINATIONAL ARRAY DIVIDER 
 
Fig. 5 shows the hardware of this array divider for N=8, M=4. Note that the first M=4 stages only require 4 units, while the next 
stages require 5 units. This is fully combinatorial implementation. 
 Each level computes 𝑅𝑖. It first computes 𝑌𝑖 − 𝐵. When 𝑌𝑖 ≥ 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 1, and when 𝑌𝑖 < 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 0. This 𝑐𝑜𝑢𝑡𝑖 is used 

to determine whether the next 𝑅𝑖 is 𝑌𝑖 − 𝐵 or 𝑌𝑖. 

 Each Processing Unit (PU) is used to process 𝑌𝑖 − 𝐵 one bit at a time, and to let a particular bit of either 𝑌𝑖 − 𝐵 or 𝑌𝑖 be 

transferred on to the next stage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
FULLY PIPELINED ARRAY DIVIDER 
 
Fig. 6 shows the hardware core of the fully pipelined array divider with its inputs, outputs, and parameters.  
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Figure 5. Fully Combinatorial Array Divider architecture for N=8, M=4 

 

Figure 6. Fully pipelined IP core for the array divider 
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5 Daniel Llamocca 

Fig. 7 shows the internal architecture of this pipelined array divider for N=8, M=4. Note that the first M=4 stages only require 
4 units, while the next stages require 5 units. Note that the enable input ‘E’ is only an input to the shift register on the left, 
which is used to generate the valid output 𝑣. This way, valid outputs are readily signaled. If E=’1’, the output result is computed 

in N cycles (and v=’1’ after N cycles). 
  

Figure 7. Fully Pipelined Array Divider architecture for N=8, M=4 
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6 Daniel Llamocca 

ITERATIVE RESTORING DIVIDER 
 
Fig. 8 shows the iterative hardware architecture as well as the state machine. Here, 𝑅𝑖 is always held at register R. The subtractor 

computes 𝑌𝑖 − 𝐵. This requires 𝑀 + 1 bits in the worst case. 

 If 𝑌𝑖 ≥ 𝐵 then 𝑅𝑖 = 𝑌𝑖 − 𝐵. Yi here is the minuend. 𝑌𝑖 − 𝐵 is loaded onto register R. Note that only M bits are needed. 

 If 𝑌𝑖 < 𝐵, then 𝑅𝑖 = 𝑌𝑖. Here only 𝑌𝑖 is loaded onto register R. This is done by just shifting 𝑎𝑁−1 into register R 

 
Note that R requires M bits since it holds the remainder at every stage. Also, since we always shift 𝑐𝑜𝑢𝑡𝑖 onto register A, the 

quotient Q is held at A in the last iteration. 
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Figure 8. Iterative Divider 


