ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Digital Library: Arithmetic Cores RECRLAB@OU

Divider Implementation

ALGORITHM

= The division of two unsigned integer numbers A/B (where A is the dividend and B the divisor), results in a quotient Q and
a remainder R. These quantities are related by A = B x Q + R.
For the implementation, we follow the hand-division method. We grab bits of A one by one and comparing it with the divisor.
If the result is greater or equal than B, then we subtract B from it. On each iteration, we get one bit of Q. Fig. 1 shows the
algorithm as well as an example: A = 10001100; B = 1001

00001111 <= Q

ALGORITHM
B -»1001) 10001100 €= A
1001l R =20
for i = n-1 downto 0
10001 left shift R (imput = aj)
1001 if R > B
10000 g; = 1, R« R-B
1001 else
a; =0
1110 end
1001 end
101 e= R

Figure 1. Division Algorithm
For hardware implementation, we consider restoring dividers (i.e., those that keep the actual residue value at every step).

SUBTRACTION OF UNSIGNED NUMBERS REPRESENTED WITH n BITS: T = R — B

= This point deserves special attention as the divider hardware relies on.a result obtained here.
= We usually determine the sign of the subtraction by sign-extending R and B so that they are in 2's complement representation
with n + 1 bits. Then, we do: T = R + not(B) + 1, where T = t,t,—it,_, ... to, and t,, determines the sign of the subtraction
result.
However, when R and B are unsigned, we can.compute not(B) without sign-extending B. We then analyze c,, = cout:
- Ifc,=1-R=B(and R — B isequal to t,,_qt,_, ... ty, ise. it is an unsigned number with n bits)
If ¢, =0 —> R < B (here R —B is NOT equal to t;_1t,<5 ... tg)

NOTE ABOUT THE 2'S COMPLEMENT OF ZERO

= Let A be a number in 2's‘complement with n bits: 4 = a,_;a,_ ... ag, Where A = —a,,_, 2" + Y- 2 q;2¢ is the signed decimal
value of A.

» The 2's complement of 4 is given by: P =not(4) + 1. P = pp_1Pn—z Do
If P and 4 are thought as n-bit unsigned numbers, i.e.: A = ¥} a;2¢, P = Y1} p;2¢ then: P = 2™ — A.

= Whatif A =.0? Here P = 2™ requires n4 1 bits. Why P is not zero? This is actually

consistent‘'with 2's complement arithmetic, as in the operation Q — A: — WL

Q — A = Q +not(P) + 1, we let cin hold the value of 1, so that if 4 =0, then g

not(A) =11 ...11and cin = 1. This way, not(A) + 1 is properly represented. Fig. LA l<=cin = co
2<shows this operation. Note that with cin = 1, all carries (from ¢, to cy) are Q: 9n-19n-29n-3- - -0

one. The result of the operation is then Q. There is no overflow as overflow = P: 11 1...1

cn®cy, = 0. Thus, the case A =0 works very well for 2’s complement

operations, if we include let cin carry the value of 1. dn-1Gn-2Gn -3+ - - o

Figure 2. Q-A when A=0

COMPUTING R - B WITH n bits

" R=r1y 4Ty y..To, B=by_1b,_,..by. With R,B unsigned, we have 0 <R,B<2"-1

= Todo R - B, we sign-extend R and B to n + 1 bits turning them into two numbers in 2’s complement representation. The
sign-extension actually amounts to zero-extending. Then: R = 0r,_17—3 .79, B = 0by_1bp_5 ...by. 1, = b, =0. In 2's
complement, we have that: 0 < R,B < 2™ — 1. It follows that: —(2" —1) < R — B < 2" — 1. Thus R — B can be represented
in 2's complement with n + 1 bits (as expected).

= LetK =not(B)+1, K = kpky_1kn_5 ... ko- In unsigned representation, K = 2"*1 — B,

Fig. 3 shows the operation R — B by using: R + K, where K = not(B) + 1. Recall that we let 1 be held by cin. Note that if B =
0 —» K = 2™*1 (here K is represented by the second operator as well as cin = 1)

1 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

Digital Library: Arithmetic Cores

RECRLAB@OU
1 <«<— Cip
R: Orp-1rp—...rg — : R: Orp-1rpn-2...rg +
B: Obp-1bp-. . .bg K: 1kn-1kn-2. . .ko

Figure 3. Operation R —B =R+ K = R 4+ not(B) + !

Now, we determine the value of k,_;:

Case B#0:1<B<2"—1-2"M1_-(2"—-1)<K<2™1—-1.2"+1<K<2™1—-1.Thus, k, =
Case B = 0: K = 2™, K requires N + 2 bits, with k,,; =1, and k, = 0:
K knkn—1kn—z - ko kn
2n 100...0
B#0 2"+ 1 100...1 -1
(or B > 0) e
2ntl —q 111..1
B=0 2ntt 1000...0 k,=0

Now, we consider R, B, and K to represent unsigned integers.

n-1 n-1

R-B=R+K= zrlzwz;cy—znz +k2”+Zk2‘

L

n—-1
R+K=R+2n+1—B=Zri21+2"+1—2bi2i
i=0

i=0
R=B<0:
SinceR20—>B>0—>k
= R+2"1—B =y, rlzl +2mtt Yol p2t < 21t
SR+K =310 2+ k2" + X k20 <2 o B b2t R R k2P <20

o The (n + 1)-bit sum (considering the operation as un5|gned) of R and K is lower than 2™*1, Then, there is no overflow
in the (n + 1)- bit unsigned sum. Thus ¢, ,; = 0.
o The n-bit sum (considering the operations as unsigned) of R and k&, 1k, _, ..

.ko is lower than 2™. Thus, there is no
overflow of the n-bit unsigned sum. Thus ¢, = 0.

R—B>0:

= R+2™M—pB=3y"lr20+ ynlp2b>

SR4K =X n2t + k2" + Y k28 > 2 Sy by b Y e 28 > 2L — g o

o The (n+ 1)-bit sum (con5|der|ng the operation as unsigned) of R and K is greater or equal than 2"*1. Then, there is
overflow of the (n + 1)-bit unsigned sum. Thus ¢, = 1.

o For the n-bit sum of R and kn 1kn 2- ko, we have two cases:
B>0-k,=1.Then X1 r2t + R k28 > 271 — 27 — Yoty 20 4 Yo
B=0-k,=0.Then ¥ tn2! + zrzolk 2t > 2nHl
In both cases, the n-bit sum (considering the operands as unsigned) of R and k,,_,k,_, ... ky is greater of equal than 2™.
So, there is overflow of the n-bit unsigned sum. Thus ¢, = 1 when R > B.

2n+1 2n+1

o k2t = 2n

2's complement operation R — B with n + 1 bits: There is no overflow of the subtraction as ¢, = ¢,,_;.
For R — B = 0: The result T = R — B is a positive number, thus T, = 0. Therefore t,,_;t,_5 ...t, contains R — B in unsigned
representation.

In conclusion:

IfR<B-c¢,=0.Thenbits T,,_1T,_, ...
IfR>=B-¢,=1.Thenbits T,_1T,_, ..

T, DO NOT contain the result R — B.
.T, DO represent R — B in unsigned representation.

2 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Digital Library: Arithmetic Cores RECRLAB@OU

RESTORING ARRAY DIVIDER FOR UNSIGNED INTEGERS

= A, B: positive integers in unsigned representation. A = ay_jay_, ...ao With N bits, and B = by, _1by_, ... by With M bits, with
the condition that N > M. Q = quotient, R = residue. A= B X Q + R.

In this parallel implementation, the result of every stage is called M bits

the remainder R;. Y

Fig. 4 depicts the parallel algorithm with N stages. For each stage Stage 0| | | | | |

i, i=0,..,N—1, we have: R,
R;: output of stage i. Remainder after every stage. l Y
Y;: input of stage i. It holds the minuend.
Stage 1 | | | | | |
For the next stage, we append the next bit of A to R;. This becomes R}
Y41 (the minuend): Y
Yis1 = Ri&ay_1-1,i=0,..,N—1 l
. . Stage 2 | | | | | |
At each stage i, the subtraction Y; — B is performed. If Y; > B then R
R;=Y;—B.IfY;<B,thenR; = ;. i
Y,
Stage Y; Computation of R; # of Stage 3 | | | | | |
i : R; bits
_ Ry=Y,—B,if ¥, =B
0 Yo = an-y Ry =Y, ifY,<B 1
. R,_»
_ R,=Y,—B,if ;=B M-2
1 Y, = Ro&ay_, R, =Y, ifY,<B 2 ith)
R,=Y,—B,ifY, =B
2 Y, = Ri&ay_; Rz — Yz.if yzj; é 3 Stage M-1 | | | | | |
Ryg
Ry-1=Yy_1—B,if Yy_1 =B iL
M-1 | Yyoy =Ry_o&ay_y | pM7" _ M7 M1 M
M-1 M—2&RAy-N Ry—1=Yy_1,if Yy_1 <B StageM| | | | | | |
. . . \ . R,
Since B has M bits, the operation Y; — B requires M bits for both '1
operands. To maintain consistency, we let Y; be represented with) l
M bits.
sagems1| | [[.| | |
R;: output of each stage. For the first M stages, R; requires i + 1 R”“”
bits. However, for consistency and. clarity’s sake, since -R; might be ll

the result of a subtraction; we let R; use M bits.

For stages 0 to M — 2: : :
R; is always transferred onto the next stage. Note that we transfer l l l lR

R; with M — 1 least significant bits. There is no loss of accuracy
here since R; at most requires M-1 bits for stage M-2. We need R;

with M-1 bits since Y4, uses M bits. stagen1| | [[..] | |
..

Stages M —1toN —1:

Starting from stage M —1, R; requires M bits. We also know that M+l bits

the remainder requires.at. most M bits (maximum value is 2¥ — 2). Figure 4. Parallel implementation algorithm

So, starting from stage M-1 we need to transfer M bits.
As Y;,; now requires M + 1 bits, we need M + 1 units starting from stage M.

= To implement the operation Y; — B we use a subtractor. When Y; > B — cout; = 1, and when Y; < B — cout; = 0. This cout;
becomes a bit of the quotient: Q; = couty_,_;. This quotient Q requires N bits at most.

= Also, the final remainder is the result of the last stage. The maximum theoretical value of the remainder is 2" — 2, thus the
remainder R requires M bits. R = Ry_;.

= Also, note that we should avoid a division by 0. If B=0, then, in our circuit: Q = 2¥ —1and R = ay_1ay_3 ... ao-

3 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

Digital Library: Arithmetic Cores RECRLAB@OU

COMBINATIONAL ARRAY DIVIDER

Fig. 5 shows the hardware of this array divider for N=8, M=4. Note that the first M=4 stages only require 4 units, while the next

stages require 5 units. This is fully combinatorial implementation.

= Each level computes R;. It first computes Y; — B. When ¥; = B - cout; = 1, and when Y; < B — cout; = 0. This cout; is used

to determine whether the next R; is ¥, — B or Y;.
= Each Processing Unit (PU) is used to process Y; — B one bit at a time, and to let a particular bit of either Y; — B or Y;
transferred on to the next stage.

b3 0 b2 0 bl 0 bo ag

lxm lxoz lXOl l Xo0 b a

be

Co Co3 Co2 Co Coo PU
d7 <1 1
a
Yo3 Yo2 Y Yoo 6
%13 X12 X11 leO
- C C1io c Cig
Je | le—1 ¢
as
Y13 Yi2 Y11 Yio
X33 X322 X1 lxm cout FA cin
c C23 c C21 Cac
ds le— 1 l
Y23 Y22 Y21 Y29 a4 s ——; 1 0 ;
X33 X32 X31 lx3o
C3q C33 C32 Cs C39 ¢
d4 | le— 1
0 Y33 Y52 Y31 Y30 a3
\ Xay %43 X242 X471 ixw
Cys Cyy o/ Cho Ca1 c
ds I U le—1
Ya4 Ya3 V) Ya1 Yao a2
X594 Xs53 Xs52 Xs51 lxso
Css Cs c Cso Cs c
d2 l U le— 1
Ye4 Ys3 Ys2 Ys1 ¥Ys0 ar
Xe6a X63 X62 X61 ¢X60
Css Ceyq C C C -
M IN a: I U le— 1
ao
Ye4 Ye Ye2 Ye Yeo
A__Ny 4 v N/ 0 X74 %73 X792 X71 lxm
C7s c C73 C7o c C1g
B—Ms | DIVIDER | M/, o do L' PU PU PU PU PU |[«—1
Y74 7 Y72 Y71 lym
3 2 r Lo

Figure 5. Fully Combinatorial Array Divider architecture for N=8, M=4

FULLY PIPELINED ARRAY DIVIDER

Fig. 6 shows the hardware core of the fully pipelined array divider with its inputs, outputs, and parameters.
M N

A Nz L N/ 0
M M
B ARRAY 7TR

F ——>| DIVIDER | ____ 5
resetn — >
clock —>P

Figure 6. Fully pipelined IP core for the array divider

4 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Digital Library: Arithmetic Cores RECRLAB@OU

Fig. 7 shows the internal architecture of this pipelined array divider for N=8, M=4. Note that the first M=4 stages only require
4 units, while the next stages require 5 units. Note that the enable input 'E’ is only an input to the shift register on the left,
which is used to generate the valid output v. This way, valid outputs are readily signaled. If E="1’, the output result is computed
in N cycles (and v="1" after N cycles).

b, 0 b, 0 b 0 b
C‘;lw Co3 Co2 Co1 \N&
Yo3 Yo2 Yo
CIERE = SR
Ciq Cis \N Ci2
Y13 Yi2
V1] l [Z'j]
(lzz; C23
Y23
ritvrl Ul l
<|::ZJ
A I A R 1 0
C|43
A A 1 1
A I A e 1 1
V1] ;] "] []
l
I7 e ds A4 RE] dz il o s) 1 To

Figure 7. Fully Pipelined Array Divider architecture for N=8, M=4

5 Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Digital Library: Arithmetic Cores RECRLAB@OU

ITERATIVE RESTORING DIVIDER

Fig. 8 shows the iterative hardware architecture as well as the state machine. Here, R; is always held at register R. The subtractor
computes Y; — B. This requires M + 1 bits in the worst case.

= IfY; = B then R; = Y; — B. Yi here is the minuend. Y; — B is loaded onto register R. Note that only M bits are needed.

= IfY; < B, then R; =Y. Here only Y; is loaded onto register R. This is done by just shifting ay_, into register R

Note that R requires M bits since it holds the remainder at every stage. Also, since we always shift cout; onto register A, the
quotient Q is held at A in the last iteration.

B DA DB
yesetnzo
S1
NL ML
fmmmm e t-------- sclfR « 1, ER< 1
' l ' C«0
| L LEFT SHIFT E :
w 1
| REGISTER =T REGISTER :
I o
<l |5 !
: 2 A B !
1
ML 1
1 4
: — Y l«<——(:
1 % 1
' S m+1} 0 &B '
1 =3 cout A
1 a4 :
! :
] . 1
' cout {‘“ cout - / i
! o M+l !
! “,
i 3 |
! ad M k 1
1 1 1
1
1
| | scliR sclr !
: ESM LR L LEFT SHIFT an4 |
L D> ER E REGISTER " !
1
1
1
! m+1} M} :
1
| M, i
1
! 7 RyfaRy-2 .4 -Rof
. ayn-1 1
___ 1
N’/ M/z
done Q R

Figure 8. Iterative Divider

6 Daniel Llamocca

